Prevention of type I diabetes transfer by glutamic acid decarboxylase 65 peptide 206-220-specific T cells.

نویسندگان

  • Seon-Kyeong Kim
  • Kristin V Tarbell
  • Maija Sanna
  • Mary Vadeboncoeur
  • Tibor Warganich
  • Mark Lee
  • Mark Davis
  • Hugh O McDevitt
چکیده

Glutamic acid decarboxylase (GAD) 65 is one of the major pancreatic antigens targeted by self-reactive T cells in type I diabetes mellitus. T cells specific for GAD65 are among the first to enter inflamed islets and may be important for the initiation of autoimmune diabetes. However, we previously reported that nonobese diabetic (NOD) mice transgenic for a T cell antigen receptor (TCR) specific for one of the immunodominant epitopes of GAD65, peptide 286-300 (G286), are protected from insulitis and diabetes. To examine whether other GAD65-reactive T cells share this phenotype, we have generated TCR transgenic NOD mice for a second immunodominant epitope of GAD65, peptide 206-220 (G206). As in G286 mice, G206 mice do not develop islet inflammation or diabetes. When adoptively transferred along with diabetogenic T cells, activated G206 T cells significantly delayed the onset of diabetes in NOD.scid recipients. Both G206 and G286 T cells produce immunoregulatory cytokines IFN-gamma and IL-10 at low levels when activated by cognate antigens. These data suggest that GAD65-specific T cells may play a protective role in diabetes pathogenesis by regulating pathogenic T cell responses. A better understanding of the functions of autoreactive T cells in type I diabetes will be necessary for choosing desirable targets for immunotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-cell Tolerance Following Bacterial Glutamic Acid Decarboxylase (GAD) Feeding in Streptozotocin-induced Diabetes

Background: Autoimmune type 1 diabetes mellitus is caused by T-cell mediated immune destruction of the insulin-producing β-cell in pancreatic islets of Langerhans. Specificity of the auto-antibodies and of the auto-reactive T-cells has been investigated, in which several auto-antigens were proposed. Objective: To determine whether glutamic acid decarboxylase (GAD) feeding would induce oral tol...

متن کامل

INVESTIGATION ON ANTI-GLUTAMIC ACID DECARBOXYLASE ANTIBODIES IN TYPE I DIABE TES MELLITUS

Antibodies directed against the enzyme glutamic acid decarboxylase (GAD) are believed to be the main cause of destruction of pancreatic islet cells in type I (insulin dependent) diabetes mellitus. The enzyme was found both in the brain and pancreatic beta cells. Although similarities in identity of GAD in human and rat brain have been demonstrated, little is known about the interaction betw...

متن کامل

MHC class I-restricted determinants on the glutamic acid decarboxylase 65 molecule induce spontaneous CTL activity.

CD4(+) T cell responses to glutamic acid decarboxylase (GAD65) spontaneously arise in nonobese diabetic (NOD) mice before the onset of insulin-dependent diabetes mellitus (IDDM) and may be critical to the pathogenic process. However, since both CD4(+) and CD8(+) T cells are involved in autoimmune diabetes, we sought to determine whether GAD65-specific CD8(+) T cells were also present in prediab...

متن کامل

CD4+ T Cells from Glutamic Acid Decarboxylase (GAD)65-specific T Cell Receptor Transgenic Mice Are Not Diabetogenic and Can Delay Diabetes Transfer

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated tran...

متن کامل

A peptide of glutamic acid decarboxylase 65 can recruit and expand a diabetogenic T cell clone, BDC2.5, in the pancreas.

Self peptide-MHC ligands create and maintain the mature T cell repertoire by positive selection in the thymus and by homeostatic proliferation in the periphery. A low affinity/avidity interaction among T cells, self peptides, and MHC molecules has been suggested for these events, but it remains unknown whether or how this self-interaction is involved in tolerance and/or autoimmunity. Several li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 39  شماره 

صفحات  -

تاریخ انتشار 2004